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Removal of finite deformation using strain trajectories 
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Abs t rKt - -A  technique is described for removing the effects of finite deformation, given the principal values and 
orientations of strain at a number of points throughout a deformed body. 

Using the principal orientations, strain trajectories are constructed for the deformed state. The body is divided 
into finite elements bounded by these trajectories. Each element is then unstrained without changing its orienta- 
tion or position. This process creates artificial voids and overlaps, which are minimized by imparting rigid transla- 
tions and rotations to the elements according to a least squares method. 

The result is the pattern of strain trajectories for the undeformed state. It is shown that the trajectories for the 
deformed and unde[ormed states may be used as reference coordinates in order to map the change in shape of any 
body as it passes from the deformed to the undeformed state or vice versa. The technique is tested using models of 
a folded layer and a shear zone. It is suggested that the technique is versatile enough to allow for errors in original 
strain data. Although the technique has so far been applied to two-dimensional deformations, a similar method 
should be usable in three dimensions. 

INTRODUCTION 

GEOLOC3ISTS are obtaining more and more data con- 
cerning tectonic strain in rocks. In general these data are 
becoming more precise, as a result of improved methods 
of measurement. Given a sufficient number and preci- 
sion of strain measurements, it is in principle possible to 
compute the original (pretectonic) shape of any 
deformed rock mass. This is of great importance as an 
aid in determining the relative displacements across 
orogenic belts (Schwerdtner 1976, 1977) and in dis- 
tinguishing between large scale tectonic processes of 
various kinds (e.g. diapirism versus folding by regional 
compression). On a smaller scale, the possibility of 
removing strains is an aid to understanding the forma- 
tion of folds, shear zones and allied structures. 

Cloos (1947) was the first to obtain abundant strain 
data in a small region and the first to attempt unfolding a 
fold on the basis of such data. Oertel (1974) went further 
by introducing the practical notion of domains (that is 
finite elements) within each of which the strain could be 
assumed to be homogeneous. The original shape of each 
element could readily be obtained simply by reversing 
the strain, but problems arose in fitting together the 
unstrained elements. Schwerdtner (1977) and Cobbold 
(1977) have pointed out that if the state of strain is 
heterogeneous and if the strain at each point is removed 
in a straightforward way, then conditions of continuity 
are violated and the material develops fictitious holes or 
regions of overlap. To avoid such violations, one must 
also apply suitable translations and rigid rotations. What 
is more, the amount of rotation must vary from point to 
point. For a continuous material, Cobboid (1977) has 
derived exact two-dimensional expressions for rotation 
gradients in terms of strain gradients. Schwerdtner 
(1977) has shown how translations and rigid rotations 
are necessary to ensure maximum compatibility bet- 
ween finite elements. Oertel & Ernst (1978) have used 

the finite element method to remove the deforlnation in 
a multilayered fold. Thus this method, being simple to 
apply, has enjoyed a certain measure of success. The fit- 
ting of elements, however, has been done piecemeal and 
by hand. This task is both laborious and somewhat 
subjective. For these reasons, the present paper intro- 
duces a fitting technique that is based on a least-squares 
method: it miDimiTJu-s the sum of the distances between 
adjacent elements. 

In a radically different approach, based on Ramsay & 
Graham's (1970) method of integrating shear across 
shear zones, Hossack (1978) has suggested that length 
changes can be integrated along finite strain trajectories. 
Hossack does not justify his method theoretically and he 
readily admits it is incomplete, yielding no information 
regarding rigid rotations. Yet the approach is not only 
interesting, but, as will be shown, it is theoretically 
sound. 

In theory, the exact equations for continuous mate- 
rials (Cobboid 1977) should yield better results than the 
finite element methods, which are at best approximate. 
In practice, however, a number of problems arise in 
using the exact equations. First, the equations are only 
valid if the strain values used are true strains and thus 
compatible amongst themselves; otherwise there is no 
unique solution for the rotations. But anyone who has 
measured strains in rocks will know that his measure- 
ments are to some extent suspect, due to errors, inade- 
quate strain markers (of ill-known initial shape or of 
different rheology from the enclosing matrix), or volume 
changes of unknown magnitude. Furthermore, there is 
no unique way of interpolating between strain values 
measured at discrete localities. Thus it is necessary to 
find a distribution of strains that are mutually compat- 
ible and also a best-fit to the measured values. The 
problem had not yet been solved for the continuous 
model. 

A second disadvantage of the exact equations quoted 
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by Cobbold (1977) is that they are complex; even in two 
dimensions. Equivalent  equations in three dimensions 
have also been derived, but  they are even more  complex. 
It appears that the complexity results f rom the choice of 
Cartesian coordinates as a reference frame. The equa- 
tions become much more  simple ff the reference frames 
are sets of orthogonal curvilinear coordinates parallel to 
the finite strain trajectories, and this aspect will be dis- 
cussed in a forthcoming publication. In the present 
paper, curvilinear coordinates will be used in a non- 
mathematical way because they simplify some of the 
techniques adopted.  

The problem of local strain incompatibilities resulting 
from errors in strain measurement  can be overcome by 
the use of finite elements. If any one  element  is abnor-  
mally large or  abnormally small in relation to the room 
available, it simply overlaps its neighbours or leaves 
gaps. An objective method is required, however,  to 
ensure that the total amount  of overlaps and gaps is at a 
minimum, and this is a powerful reason for adopting a 
fitting technique such as the one presented in this paper. 

S IGNIFICANCE OF  STRAIN T R A J E C T O R I E S  

Although for the purposes of this paper  there is no 
need to go into mathematical detail, some of the more 
fundamental  concepts of finite strain will be reviewed 
briefly, because they provide the basis and the justifica- 
tion of what follows. 

Hobbs (1971) deserves credit for introducing into 
structural geology the most comprehensive t reatment  of 
finite strain, that by TruesdeU & Toupin (1960). These  
authors describe a deformation with the aid of three 
separate coordinate frames, one  for the deformed state, 
one  for the undeformed state, and one  a common frame 
(Fig. 1). This last is taken to be Cartesian, but the other  
two need not necessarily be so. The  deformation carries 
the point X in the undeformed state into the point x in 
the deformed state. It is always possible to express the 
deformation at any point as the product  of three compo-  
nents, a rigid translation, a rigid rotation, and a pure 
strain. In three dimensions, there is one unique set of 
three orthogonal  vectors (triad) at Xwhich  on deforma- 
tion becomes a similar triad at x. These define the prin- 
cipal orientations at X a n d  at x (Cauchy 1823). Along 
these directions at x, the longitudinal strains (or 
stretches) have maximum or  minimum values and the 
shear strains are zero; similarly, at X the reciprocal 
stretches have maximum or  minimum values. These 
maximum or minimum values are known as principal 
values. 

If we choose for our  coordinate frames at X a n d  at x, 
two sets of orthogonal  curvilinear coordinates which are 
the trajectories of the principal orientations (strain 
trajectories, for short), then in terms of these coordi- 
nates, the components  of shear strain at every point 
vanish, and the only non-zero components  are the prin- 
cipal strains (Fig. 1). This is the great advantage of using 
such coordinate frames. Fur thermore,  the angle be- 

Z2 
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Fig. 1. Coordinate frames for two-dimensional deformation. Common 
frame (Z) is Cartesian. Frames for undeformed State (X) and 
deformed state (x) are orthogonal curvilinear and parallel to finite 
strain trajectories. As a result of deformation, elements of arc SA and 
S s become s= and s~ i~initesimal rectangular element E becomes ele- 

ment e, black circle becomes black strain ellipse. 

tween corresponding trajectories at X and x is the rigid 
body rotation (Cauchy 1823). 

Now consider two elements of arc, SA and Sa, lying 
one next to the other  along a strain trajectory at X(Fig.  
1). After  deformation,  the first e lement  has become s= 
and it lies along a strain trajectory at x. But S a has 
become sb and it too must lie along a strain t rajectory in 
the deformed state. Therefore  unless there is a discon- 
tinuity or loss of cohesion between the two elements, 
both must lie along the same trajectory in the deformed 
state. By extending this argument it will be clear that the 
deformation carries the strain trajectories of the unde- 
formed state into the corresponding trajectories in the 
deformed state. Thus the total length of a trajectory in 
the undeformed state can be obtained by simple integra- 
tion of the reciprocal stretch along the corresponding 
trajectory in the deformed state, and thus the method of 
Hossack (1978) is fully justified. Indeed, if one were to 
integrate along all the strain trajectories at the same 
time, introducing the required rigid rotations, the entire 
deformation would be removed. The problem with 
doing this in practice is that it is difficult to take into 
account any errors in strain values. The  finite element  
method would appear  to be more flexible in this respect. 

STRAIN T R A J E C T O R I E S  AS M A P P I N G  
C O O R D I N A T E S  

As with other  systems of coordinates, the finite strain 
trajectories can be used to map the shape changes 
undergone by any body as it passes from the deformed to 
the undeformed state, or  vice versa. The  advantage of 
strain trajectories over  o ther  coordinates is that they are 
parallel to the principal stretches at all points. Two 
examples illustrate these points. 

Consider first a hypothetical fold (Fig. 2) formed by 
bending of a layer. In the deformed state (Fig. 2b), the 
stretches are parallel or  normal to the layer boundary 
and so therefore are the strain trajectories: they form 
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arcs of circles and radiae. In the undeformed state (Fig. 
2a), the trajectories are also parallel and normal to the 
layer boundaries and they form straight lines. This situa- 
tion is a special one  in that the trajectories are Cartesian 
in the undeformed state. In general they are not  neces- 
sarily so. It will be clear that the two sets of trajectories 
can be used to map the shape of the layer boundaries as 
they pass from the undeformed to the deformed state, or  
vice versa; the layer boundaries coinciding with one  of 
the coordinate fines in both states. 

a b 

Fig. 2. Hypothet ical  fold formed by bending of  a layer. Strain trajec- 
tories in unde fo rmed  state (a) are  Car tes ian;  those  in de formed  state 
(b) are  arcs of  circles and  radiae. Layer  boundar ies  are  shown in thick 

lines. 

Now consider a second more  complex example, that 
of a shear zone (Fig. 3). Outside the zone of shear, the 
rock is undeformed and the strain trajectories have no 
meaning. If the deformation is considered to be 
extremely small, however,  the trajectories are at 45 ° and 
135 ° to the shear  direction in both the deformed and the 
undeformed states. Within the zone of shear the trajec- 
tories have sigmoidal forms and it can be shown (see, for  

example, Jaeger  & Cook 1969, fig. 17.7) that those in 
the deformed state (Fig. 3b) are obtained from those in 
the undeformed state (Fig. 3a) by reflection about  a 
plane of mirror  symmetry normal to the shear direction. 
This symmetry is a special proper ty  of simple shear 
deformations and is not  valid for  all deformation pat- 
terns. If the strain trajectories are used as reference 
coordinates,  the area A B C D  becomes the area abed, 
and the rectangle E F G H  becomes sheared into the 
shape efgh. This last indicates the shear strain across the 
zone of shear. 

These  examples of a fold and a shear zone will be used 
to test the finite e lement  technique introduced in the fol- 
lowing section. They  also illustrate some of the proper-  
ties and uses of strain trajectories. Much information can 
be' gleaned from trajectory patterns even if the strain 
values are not well known. In many rocks, trajectory 
patterns for  the deformed state can be drawn by making 
the reasonable assumption (Williams 1977) that trajec- 
tories are identical to those obtained from the schis- 
tosity, the stretching iineation and the normal to both 
elements. In many other  geological examples, principal 
strain orientations are known with more accuracy than 
principal strain values. Thus one  of the easiest, most reli- 
able and most useful of  maps that can be prepared for a 
deformed region is a strain trajectory map. 

F INITE E L E M E N T  T E C H N I Q U E  

a 
• | t  " • • 

h 
Fig. 3. Hypothet ical  shear  zone.  Outs ide  zone  of shear,  t rajectories are 
Cartesian and or ienta ted  at 45 ° and  135 ° to shear  p lane in both unde-  
formed state  (a) and deformed state (b). With in  shear  zone  proper ,  
trajectories are sigmoidal.  Pa t te rn  a is mirror  image of pa t te rn  b. As  a 
result of  deformat ion,  a rea  A B C D  becomes  are~ abcd; rectangle 
E F G H  is sheared  into form efgh, indicating shear  strains and  displace- 

m e n t s  across zone. 

In any finite element  technique, the body in question 
is divided into a finite number  of elements of finite size. 
Assumptions are then made as to the way that all 
parameters  vary within each element.  For  example, the 
simplest assumption (that adopted here) is that certain 
parameters  are constant within each element,  but  vary 
from element  to element.  By definition these para- 
meters  are therefore  discontinuous at element  bound- 
aries. 

In the technique adopted here, it is assumed that 
strains, rigid rotations and rigid translations are constant 
within each element.  The problem is to find the trans- 
lations and rotations in such a way that the elements fit 
together  with a minimum of overlap or  voids. 

The basic data required for the analysis are" (a) a 
strain trajectory map or the transformation equations 
that give the shape of the strain trajectories in space, (b) 
a map of strain values, or  a set of functions giving the 
variation of strains in space. The strain trajectories can 
be obtained by fitting curves tangent to the principal 
orientations as measured at a number  of discrete 
localities. The  strain values or strain map can be 
obtained by a contouring technique or  by polynomial 
approximation. For  many two-dimensional problems, 
graphical fitting of strain trajectories and hand- 
contouring of strain values are probably sufficiently 
accurate. 

The  finite e lement  technique is perhaps best described 
in stages with reference to examples. The examples 
chosen here  are the fold of Fig. 2 and the shear zone of 
Fig. 3. 
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1. The first step is to divide the body into strips of 
approximately equal width and bounded by the strain 
trajectories. In two dimensions, this process yields an 
array of contiguous quadrilateral elements with curved 
sides that meet at right angles (Figs. 2b and 3b). In three 
dimensions, the elements are six-sided. 
2. The second step is to approximate each element by 
one which has straight or plane sides. Thus in two dimen- 
sions we obtain rectangles and in three dimensions, 
rectangular prisms. These elements are the ones used for 
the analysis. 
3. The third step is to remove the strain from the ele- 
ments. The principal strains are parallel to the element 
sides and the chosen strain values are those of the cen- 
troid. Thus the length, breadth and width of the element 
are simply stretched by the appropriate amounts. The 
result is another rectangle or rectangular prism, with the 
same centroid and the same orientation as before (Figs. 
4a and 5a). 

I 

a h 

details). For the example of the fold (Fig. 4b), the finite 
element technique gives the exact answer, because the 
strain trajectories in the undeformed state are in fact 
straight lines. For the shear zone (Fig. 5b), gaps and 
overlaps almost vanish completely. There is a slight 
imbrication of elements at the boundary of the region 
and this is due to the fact that neighbouring elements are 
missing, only a small part of the shear zone having been 
chosen for analysis. In the centre of the region, there is 
no imbrication. The results of the analysis should be 
compared with the exact solution (area ABCD bounded 
by thick outline, Fig. 3a). The approximation is quite 
good - -  sufficient perhaps for geological purposes. 
5. The fifth step is the reconstruction of the finite strain 
trajectories in the undeformed state. These can be used 
to map the shape of any body from the deformed to the 
undeformed state, as explained in the previous section. 
The mapping may be performed by hand, this being 
perhaps as reliable as any numerical calculation. 

It should be emphasized that in the tests performed 
using the fold and shear zone models, no errors were 
introduced deliberately into the strain data. A detailed 
evaluation of the effects of such errors is a subject for 
further investigation. Initial tests using deliberately 
incompatible elements (e.g. Fig. 6) are encouraging. If, 

Fig. 4. Unfolding of fold by finite element technique. In first step (a), 
rectangular elements approximating those of Fig. 2b are unstrained 
without change of position or orientation, thus creating voids (top) and 
overlaps (dotted lines). In second step (b), voids and overlaps are 
minimized, yielding unfolded layer with strain trajectories in unde- 

formed state (compare Fig. 2a) 

4. The fourth step is to translate and rotate each element 
in such a way as to minimize the total number of gaps and 
overlaps (these being given equal weight). This process 
may be done by hand but is time-consuming and some- 
what subjective. The method given in the Appendix is a 
least squares method appfied to the sum of the distances 
between vertices that originally were in contact. 
Minimization of this sum leads to a series of equations in 
the unknown translations and rotations. The equations 
are solved by an iterative method (see Appendix for 

Fig. 6. Effect of local strain incompatibility. Nine finite elements are 
shown in positions that minimize voids and overlaps. Central element 
is abnormally small (incompatible) and is therefore surrounded by 
voids. Other elements overlap mutually to help compensate 

incompatibility. 

Fig. 5 Removal of shear by finite element technique. In first step (a), rectangular elements appro~mating those of area abcd 
(Fig. 3b) are unstrained without change of position or orientation, thus creating voids and overlaps. In second step (b), voids 

and overlaps are minimized, yielding good approximation to undeformed state (area ABCD, Fig. 3a). 
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for example, an element is locally too small, it will be 
surrounded by voids (central element, Fig. 6) whose 
volume can be calculated. Thus it is possible to gain a 
measure of errors or of local volume changes. 

So far, the finite element method has been tested in 
two dimensions. It should be possible to extend the 
method to three dimensions. Another subject for 
investigation is the use of finite elements with curved 
sides. Such elements have been used successfully in 
finite element analysis of mechanical problems. 

CONCLUSIONS 

From this paper we may draw various conclusions of a 
theoretical and practical nature. The theoretical conclu- 
sions are as follows. 
1. As a result of deformation, the strain trajectories of 
the undeformed state are transformed into strain trajec- 
tories of the deformed state. 
2. The angle between corresponding trajectories in the 
deformed and undeformed states is the rigid body rota- 
tion. 
3. The strain trajectories may be used as reference 
coordinates and for mapping from one state to the other. 
In terms of these coordinates, all components of shear 
strain vanish. 
4. If the value of principal stretch is known at all points 
along a trajectory in the deformed state, the length of the 
corresponding trajectory in the undeformed state may 
be evaluated by simple integration. 
5. If such integration is carried out simultaneously along 
all strain trajectories, allowance being made for rigid 
body rotations, the body will be restored to its original 
shape. 
6. The presence of errors in strain data renders difficult 
such an integration and renders difficult also the calcula- 
tion of the rigid body rotations. 

Concerning the finite element method, we may draw 
the following conclusions. 
1. Finite element methods can provide good approxima- 
tions to the exact solutions for removal of deformation. 
2. The method presented here includes an objective fit- 
ting of elements that is relatively rapid, flexible, and 
allows for the presence of errors in strain data. 
3. The finite element method yields the rigid translations 
and rotations necessary to undeform the body in ques- 
tion. By fitting the elements together it also circumvents 
the need to integrate the deformation gradients 
throughout the body, and it yields directly the strain 
trajectories in the undeformed state. 
4. The method has so far been applied in two dimen- 
sions, but should be readily applicable to three dimen- 
sional problems, which are perhaps of greater interest 
geologically. The two-dimensional method is neverthe- 
less useful for undeforming folds, shear zones, or any 
structure formed by a general plane strain. 
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APPENDIX 
t 3 , , ~  ot e t ~ e n  by tern squme, w t t ~  

The following two-dimensional method is inspired by the work of 
Etchecopar  (1974), who used a similar approach to simulate 
mathematically the deformation of  a polycrystalline aggregate. 

The basic formulae  are best derived by considering f i r s t  two ele- 
ments,  identified by suffixes i and j (Fig. 7). The effects of more  ele- 
ments  will be  considered later. Let the coordinates of the centroids be 
A ~, 17 and A s,/~; let the half-widths of the elements  be X ~ and X 7 and let 
the half-heights be Y~ and Y~. Initially the elements  are parallel to the x, 
y Cartesian coordinates. The vertices are labelled 1 to 4 clockwise and 
the distance between vertices 2 ~ and 1 j is dt; that between vertices 3 ~ 
and • is d2 (Fig. 7). The problem to be solved is this: if e lement  / is 
rotated through an angle Wand the centroid is displaced to (a', b:), what 
is the new orientation, 0 ~, of e lement  i and the new position (a',/~) of its 
centroid, such that the sum D = d~ + d 2 is minimized? 

If the coordinates of vertex 2, e lement  i, after rotation and transla- 
tion, are x2, Y2, then the distance D to be minimized is: 

D = (X2  i - -  xlJ)  2 "l" 0'2 i -- y l i )  2 "}- (X3 / -- X4i) 2 + (y3 i -- y4)) 2. ( l )  

We may refer coordinates for each element to the centroid of that 
e lement  by putting, for example, x] ~ = x2 ~ - a~,y~ ~ = y2 i - b i. The 
effect of  a clockwise rotation of e lement  i on node 2 is: 

1 2 1 I 

. 4 :3 
X ~ 3 

Fig. 7. Two stages in the fitting together  of two elements. At  left, ele- 
ments  i and j are parallel but separated by distances d: and d2. At  right, 
e lement  ./has been  given new position and new orientation W; element i 
has adopted new position and new orientation 0 ~ in such a way as to 
minimize sum d I + d~. Elements  have become parallel again and 

attached at boundaries. 
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( 211=( °oso` sino`l/ 't 
y g !  - s i n  O  ̀ cos 0' /~ gi ] ' (2) 

By subst i tut ing (2) and similar expressions in (1) we obtain, after much  
rearrangement,  

D = (.~,2 + ~i~) + (.~F + ~J~) + (a ~ _ aJ)2 + (b i _ bJ)2 

+ {a ~ - a~X~'  cos  o` + ~ J  cos  o 0  

+ (b' - bJ)(~ ' sin O' - ](J sin 0 j) 

- 2 ~ ' ~ ' J  cos(0 '  - ~ ) .  ( .Y '~J  - f q T q .  (3) 

We n o w  min imize D w i th  respect to  a ', b ~ and O`, obta in ing:  

1 0D 
4 0a i = (a' - a J) + ,yt cos O` + ~ cos 0 ~ = 0 

1 0D 
4 ~b ~ = (b~ - b~) -~ 1~~ sin O  ̀- ~J sin 0 ~ -= 0 

I ~D 
4 0O` --" - (a~ - ~ ) ~  sin O  ̀- (b ~ - b~)~ ' cos O  ̀

+ ( ~ ' ~  - Y' YJ)" sin(o` - 0 0 = 0 (4) 

o r :  

a'  = a ~ + ~"  cos O  ̀+ ~'J cos  0J 

b ' --.bJ - ~ '  sin O` - ~ ' i  sin 0J 

(b' - b : )~ "  + (~ '~ ' J  - } "~J )s i n  
tan O` = _(a~ _ a j )~  w _ (.~,~,~ _ ~ J ) c o s  0 J" (5) 

Fo r  this s imple case o f  t w o  e lements,  the three equat ions (5)  may  he 
solved s imultaneously,  giving 0 ~ -- 0J. T he  rotation and  corresponding 

translat ion assembles  the e lements  as on  the  r. h. s. of Fig. 7. It is 
obvious intuitively that  this pa t te rn  minimizes  the d i s tance /9 .  

If there  is more  than  one  e lement  adjacent  to e lement  k then  equa-  
tions (5) have the  same form, but  each neighbour ing e lement  contri- 
bu tes  t e rms  on the  r. h. s. in the  same  way as does e lement  j. Equat ions  
(5) then  give the  posit ion of  e lement  i that  minimizes  all gaps and  over-  
laps with its neighbours .  It can be seen that  equat ions  (5) are nonl inear  
in terms of 0 i, 0~ etc. 

Explicit expressions for 0 i, a '  a n d / ~  are not  always easy to obtain. 
The  equat ions  can however  be  solved in an  iterative way. Initial values 
are a s sumed  for 0 i, d and /~  and  new values calculated using (5). This  
process is repeated until no  fur ther  significant change occurs in the  
values of these  parameters .  E lement  i is then  in a best-fit  position with 
respect to its neighbours .  

For a sys tem with m a n y  elements ,  each may  he  adjus ted  with respect  
to its neighbours ,  using equat ions  similar to (5). If the  ad jus tments  are 
made  in order,  e lement  by e lement ,  th roughout  the  system,  all voids 
and  overlaps will he  considerably reduced.  Fur thermore ,  this process 
may  be repeated many  t imes until the  voids and overlaps are reduced 
no further.  At  this s tage the  solution has  been  obtained.  

Al though  equat ions  (5) are nonl inear ,  the iterative me thod  of  solu- 
tion is closely comparable  to the  Ganss -Se ide l  me thod  of solving l inear 
equations.  In both  methods ,  the rate of  convergence of the  solution 
must  be closely moni tored,  and  can be has tened  by suitable techni- 
ques,  such as the  use of  an overrelaxat ion factor. Tes ts  so far per-  
fo rmed indicate that  it is advisable to per form at least as many  itera- 
t ions as there  are e lements ,  after  which fur ther  ad jus tments  are 
negligible; but  this general  rule may  not  be valid in certain special 
si tuations,  and care mus t  be taken to ensure  that  convergence is ade-  
quate.  

Computa t ions  for the  mode l  shown in Fig. 5 (108 e lements)  
required about  4 h on a Hewle t t -Packard  Model  9821A Calculator.  
Equivalent  t ime on a large automat ic  compute r  should be a few 
minutes .  The  array of e lements  was drawn by a Hewle t t -Packard  
Model  9826A Plotter. 


